Suppose Firm 1 and Firm 2 have a constant \(MC=AC=8\). The market (inverse) demand curve is given by:
\[\begin{aligned} P&=200-2Q\\ Q&=q_1+q_2\\ \end{aligned}\]
Break demand apart into both firms’ output.
\[\begin{align*} P&=200-2Q\\ P&=200-2(q_{1}+q_{2})\\ P&=200-2q_{1}-2q_2\\ \end{align*}\]
Solving for Firm 1, recalling that MR is twice the slope of the inverse demand curve: \[MR_{1}=200-4q_{1}-2q_2\]
Firm 1 maximizes profit at \(q^*\) where \(MR=MC\):
\[\begin{align*} MR_{1}&=MC && \text{Profit-max condition} \\ 200-4q_{1}-2q_2&=8 && \text{Plugging in}\\ 192-4q_1-2q_2&=0 && \text{Subtracting 8 from both sides}\\ 192-2q_2&=4q_1 && \text{Adding }4q_{1} \text{ to both sides}\\ 48-0.5q_1&=q_1^* && \text{Dividing both sides by 4}\\ \end{align*}\]
Since Firm 2 is identical, its \(q^*\) is: \[q_2^*=48-0.5q_{1}\]
Find Nash equilibrium algebraically by plugging in one firm’s reaction curve into the other’s
\[\begin{align*} q_{1}&=48-0.5q_2 && \text{Firm 1's reaction function}\\ q_{1}&=48-0.5(\textcolor{blue}{48-0.5q_{1}}) && \text{Plugging in Firm 2's reaction function}\\ q_{1}&=48-24+0.25q_{1} && \text{Distributing the }-0.5\\ q_{1}&=24+0.25q_{1} && \text{Subtracting}\\ 0.75q_{1}&=24 && \text{Subtracting }0.25q_{1} \text{ to both sides}\\ q_{1}&=32 && \text{Dividing by 0.75}\\ \end{align*}\]
Symmetrically, \(q_{2}=32\)
Both firms produce 32:
\[\begin{align*} P&=200-2(32)-2(32)\\ P&=\$72\\ \end{align*}\]
We can find the profit for each firm:
\[\begin{align*} \pi_{1}&=q_{1}(P-c)\\ \pi_{1}&=32(72-8)\\ \pi_{1}&=\$2,048\\ \end{align*}\]
Suppose now both firms collude and act like a single monopolist, who sets:
\[\begin{align*} MR&=MC && \text{Profit-max condition}\\ 200-4Q&=8 && \text{Plugging in}\\ 192-4Q&=0 && \text{Subtracting 8 from both sides}\\ 192&=4Q && \text{Adding }4Q \text{ to both sides}\\ 48&=Q && \text{Dividing both sides by 4}\\ \end{align*}\]
So each firm will produce 24.
The monopoly price will then be \[\begin{align*} P&=200-2Q\\ P&=200-2(48)\\ P&=\$104\\ \end{align*}\]
Total profit will then be: \[\begin{align*} \Pi&=Q(P-c)\\ \Pi&=48(104-8)\\ \Pi&=\$4,608\\ \end{align*}\]
with $2,304 going to each firm.
We know the Bertrand-Nash equilibrium is the perfectly competitive one, i.e. where \(p=MC\).
\[\begin{align*} P&=MC\\ 200-2Q&=8\\ 192-2Q&=0\\ 192&=2Q\\ 96&=Q\\ \end{align*}\]
Each firm produces 48.
The price should be marginal cost, and profits should be zero, but we can confirm:
\[\begin{align*} P&=200-2Q\\ P&=200-2(96)\\ P&=\$8\\ \end{align*}\]
Total profit will then be: \[\begin{align*} \Pi&=Q(P-c)\\ \Pi&=96(8-8)\\ \Pi&=\$0\\ \end{align*}\]
Comparing the different equilibria: