class: title-slide # 1.3 — Perfect Competition I ## ECON 326 • Industrial Organization • Spring 2023 ### Ryan Safner<br> Associate Professor of Economics <br> <a href="mailto:safner@hood.edu"><i class="fa fa-paper-plane fa-fw"></i>safner@hood.edu</a> <br> <a href="https://github.com/ryansafner/ioS23"><i class="fa fa-github fa-fw"></i>ryansafner/ioS23</a><br> <a href="https://ioS23.classes.ryansafner.com"> <i class="fa fa-globe fa-fw"></i>ioS23.classes.ryansafner.com</a><br> --- class: inverse # Outline ### [Short Run Production Concepts](#27) ### [Costs in the Short Run](#37) ### [Costs in the Long Run](#65) ### [Revenues](#75) --- # Recall: The Firm's Two Problems .pull-left[ .smallest[ 1<sup>st</sup> Stage: .hi[firm's profit maximization problem]: 1. **Choose:** .hi-blue[ < output >] 2. **In order to maximize:** .hi-green[< profits >] 2<sup>nd</sup> Stage: .hi[firm's cost minimization problem]: 1. **Choose:** .hi-blue[ < inputs >] 2. **In order to _minimize_:** .hi-green[< cost >] 3. **Subject to:** .hi-red[< producing the optimal output >] - Minimizing costs `\(\iff\)` maximizing profits ] ] .pull-right[ .center[ ![](../images/management.jpg) ] ] --- # Visualizing Total Profit As `\(R(q)-C(q)\)` .pull-left[ - `\(\color{green}{\pi(q)}=\color{blue}{R(q)}-\color{red}{C(q)}\)` ] .pull-right[ <img src="1.3-slides_files/figure-html/unnamed-chunk-1-1.png" width="504" style="display: block; margin: auto;" /> ] --- # Visualizing Total Profit As `\(R(q)-C(q)\)` .pull-left[ - `\(\color{green}{\pi(q)}=\color{blue}{R(q)}-\color{red}{C(q)}\)` ] .pull-right[ <img src="1.3-slides_files/figure-html/unnamed-chunk-2-1.png" width="504" style="display: block; margin: auto;" /> ] --- # Visualizing Total Profit As `\(R(q)-C(q)\)` .pull-left[ - `\(\color{green}{\pi(q)}=\color{blue}{R(q)}-\color{red}{C(q)}\)` - Graph: find `\(q^*\)` to max `\(\pi \implies q^*\)` where max distance between `\(R(q)\)` and `\(C(q)\)` ] .pull-right[ <img src="1.3-slides_files/figure-html/unnamed-chunk-3-1.png" width="504" style="display: block; margin: auto;" /> ] --- # Visualizing Total Profit As `\(R(q)-C(q)\)` .pull-left[ - `\(\color{green}{\pi(q)}=\color{blue}{R(q)}-\color{red}{C(q)}\)` - Graph: find `\(q^*\)` to max `\(\pi \implies q^*\)` where max distance between `\(R(q)\)` and `\(C(q)\)` - Slopes must be equal: `$$\color{blue}{MR(q)}=\color{red}{MC(q)}$$` ] .pull-right[ <img src="1.3-slides_files/figure-html/unnamed-chunk-4-1.png" width="504" style="display: block; margin: auto;" /> ] --- # Visualizing Total Profit As `\(R(q)-C(q)\)` .pull-left[ - `\(\color{green}{\pi(q)}=\color{blue}{R(q)}-\color{red}{C(q)}\)` - Graph: find `\(q^*\)` to max `\(\pi \implies q^*\)` where max distance between `\(R(q)\)` and `\(C(q)\)` - Slopes must be equal: `$$\color{blue}{MR(q)}=\color{red}{MC(q)}$$` .smallest[ - At `\(q^*=5\)`: - `\(\color{blue}{R(q)=50}\)` - `\(\color{red}{C(q)=40}\)` - `\(\color{green}{\pi(q)=10}\)` ] ] .pull-right[ <img src="1.3-slides_files/figure-html/unnamed-chunk-5-1.png" width="504" style="display: block; margin: auto;" /> ] --- # Visualizing Profit Per Unit As `\(MR(q)\)` and `\(MC(q)\)` .pull-left[ - At low output `\(q<q^*\)`, can increase `\(\pi\)` by producing *more*: `\(\color{blue}{MR(q)}>\color{red}{MC(q)}\)` ] .pull-right[ <img src="1.3-slides_files/figure-html/unnamed-chunk-6-1.png" width="504" style="display: block; margin: auto;" /> ] --- # Visualizing Profit Per Unit As `\(MR(q)\)` and `\(MC(q)\)` .pull-left[ - At high output `\(q>q^*\)`, can increase `\(\pi\)` by producing *less*: `\(\color{blue}{MR(q)}<\color{red}{MC(q)}\)` ] .pull-right[ <img src="1.3-slides_files/figure-html/unnamed-chunk-7-1.png" width="504" style="display: block; margin: auto;" /> ] --- # Visualizing Profit Per Unit As `\(MR(q)\)` and `\(MC(q)\)` .pull-left[ - `\(\pi\)` is *maximized* where `\(\color{blue}{MR(q)}=\color{red}{MC(q)}\)` ] .pull-right[ <img src="1.3-slides_files/figure-html/unnamed-chunk-8-1.png" width="504" style="display: block; margin: auto;" /> ] --- class: inverse, center, middle # Comparative Statics --- # If Market Price Changes I .pull-left[ - Suppose the market price **increases** - Firm (always setting .blue[MR]=.red[MC]) will respond by **producing more** ] .pull-right[ <img src="1.3-slides_files/figure-html/unnamed-chunk-9-1.png" width="504" style="display: block; margin: auto;" /> ] --- # If Market Price Changes II .pull-left[ - Suppose the market price **decreases** - Firm (always setting .blue[MR]=.red[MC]) will respond by **producing less** ] .pull-right[ <img src="1.3-slides_files/figure-html/unnamed-chunk-10-1.png" width="504" style="display: block; margin: auto;" /> ] --- # The Firm’s Supply Curve .pull-left[ - .hi-purple[The firm’s marginal cost curve is its supply curve]<sup>.magenta[‡]</sup> `$$\color{red}{p=MC(q)}$$` - How it will supply the optimal amount of output in response to the market price - .hi-purple[Firm always sets its price equal to its marginal cost] ] .pull-right[ <img src="1.3-slides_files/figure-html/unnamed-chunk-11-1.png" width="504" style="display: block; margin: auto;" /> ] .footnote[<sup>.magenta[‡]</sup> Mostly...there is an important **exception** we will see shortly!] --- class: inverse, center, middle # Calculating Profit --- # Calculating (Average) Profit as AR(q)-AC(q) .pull-left[ - Profit is `$$\pi(q)=R(q)-C(q)$$` ] .pull-right[ <img src="1.3-slides_files/figure-html/unnamed-chunk-12-1.png" width="504" style="display: block; margin: auto;" /> ] --- # Calculating (Average) Profit as AR(q)-AC(q) .pull-left[ - Profit is `$$\pi(q)=R(q)-C(q)$$` - Profit per unit can be calculated as: `$$\begin{align*} \frac{\pi(q)}{q}&=\color{blue}{AR(q)}-\color{orange}{AC(q)}\\ &=\color{blue}{p}-\color{orange}{AC(q)}\\ \end{align*}$$` ] .pull-right[ <img src="1.3-slides_files/figure-html/unnamed-chunk-13-1.png" width="504" style="display: block; margin: auto;" /> ] --- # Calculating (Average) Profit as AR(q)-AC(q) .pull-left[ - Profit is `$$\pi(q)=R(q)-C(q)$$` - Profit per unit can be calculated as: `$$\begin{align*} \frac{\pi(q)}{q}&=\color{blue}{AR(q)}-\color{orange}{AC(q)}\\ &=\color{blue}{p}-\color{orange}{AC(q)}\\ \end{align*}$$` - Multiply by `\(q\)` to get total profit: `$$\pi(q)=q\left[\color{blue}{p}-\color{orange}{AC(q)} \right]$$` ] .pull-right[ <img src="1.3-slides_files/figure-html/unnamed-chunk-14-1.png" width="504" style="display: block; margin: auto;" /> ] --- # Calculating (Average) Profit as AR(q)-AC(q) .pull-left[ - At market price of .blue[p* = $10] - At q* = 5 (per unit): - At q* = 5 (totals): ] .pull-right[ <img src="1.3-slides_files/figure-html/unnamed-chunk-15-1.png" width="504" style="display: block; margin: auto;" /> ] --- # Calculating (Average) Profit as AR(q)-AC(q) .pull-left[ - At market price of .blue[p* = $10] - At q* = 5 (per unit): - .blue[AR(5) = $10/unit] - At q* = 5 (totals): - .blue[R(5) = $50] ] .pull-right[ <img src="1.3-slides_files/figure-html/unnamed-chunk-16-1.png" width="504" style="display: block; margin: auto;" /> ] --- # Calculating (Average) Profit as AR(q)-AC(q) .pull-left[ - At market price of .blue[p* = $10] - At q* = 5 (per unit): - .blue[AR(5) = $10/unit] - .orange[AC(5) = $7/unit] - At q* = 5 (totals): - .blue[R(5) = $50] - .red[C(5) = $35] ] .pull-right[ <img src="1.3-slides_files/figure-html/unnamed-chunk-17-1.png" width="504" style="display: block; margin: auto;" /> ] --- # Calculating (Average) Profit as AR(q)-AC(q) .pull-left[ - At market price of .blue[p* = $10] - At q* = 5 (per unit): - .blue[AR(5) = $10/unit] - .orange[AC(5) = $7/unit] - .green[A`\\(\pi\\)`(5) = $3/unit] - At q* = 5 (totals): - .blue[R(5) = $50] - .red[C(5) = $35] - .green[`\\(\pi\\)` = $15] ] .pull-right[ <img src="1.3-slides_files/figure-html/unnamed-chunk-18-1.png" width="504" style="display: block; margin: auto;" /> ] --- # Calculating (Average) Profit as AR(q)-AC(q) .pull-left[ - At market price of .blue[p* = $2] - At q* = 1 (per unit): - At q* = 1 (totals): ] .pull-right[ <img src="1.3-slides_files/figure-html/unnamed-chunk-19-1.png" width="504" style="display: block; margin: auto;" /> ] --- # Calculating (Average) Profit as AR(q)-AC(q) .pull-left[ - At market price of .blue[p* = $2] - At q* = 1 (per unit): - .blue[AR(1) = $2/unit] - At q* = 1 (totals): - .blue[R(1) = $2] ] .pull-right[ <img src="1.3-slides_files/figure-html/unnamed-chunk-20-1.png" width="504" style="display: block; margin: auto;" /> ] --- # Calculating (Average) Profit as AR(q)-AC(q) .pull-left[ - At market price of .blue[p* = $2] - At q* = 1 (per unit): - .blue[AR(1) = $2/unit] - .orange[AC(1) = $10/unit] - At q* = 1 (totals): - .blue[R(1) = $2] - .red[C(1) = $10] ] .pull-right[ <img src="1.3-slides_files/figure-html/unnamed-chunk-21-1.png" width="504" style="display: block; margin: auto;" /> ] --- # Calculating (Average) Profit as AR(q)-AC(q) .pull-left[ - At market price of .blue[p* = $2] - At q* = 1 (per unit): - .blue[AR(1) = $2/unit] - .orange[AC(1) = $10/unit] - .green[A`\\(\pi\\)`(1) = -$8/unit] - At q* = 1 (totals): - .blue[R(1) = $2] - .red[C(1) = $10] - .green[`\\(\pi\\)`(1) = -$8] ] .pull-right[ <img src="1.3-slides_files/figure-html/unnamed-chunk-22-1.png" width="504" style="display: block; margin: auto;" /> ] --- class: inverse, center, middle # Short-Run Shut-Down Decisions --- # Short-Run Shut-Down Decisions .pull-left[ - What if a firm's profits at `\(q^*\)` are **negative** (i.e. it earns **losses**)? - .hi-purple[Should it produce at all?] ] .pull-right[ .center[ ![:scale 90%](../images/emptywarehouse.jpg) ] ] --- # Short-Run Shut-Down Decisions .pull-left[ - Suppose firm chooses to produce **nothing** `\((q=0)\)`: - If it has **fixed costs** `\((f>0)\)`, its profits are: `$$\begin{align*} \pi(q)&=pq-C(q)\\ \end{align*}$$` ] .pull-right[ .center[ ![:scale 90%](../images/emptywarehouse.jpg) ] ] --- # Short-Run Shut-Down Decisions .pull-left[ - Suppose firm chooses to produce **nothing** `\((q=0)\)`: - If it has **fixed costs** `\((f>0)\)`, its profits are: `$$\begin{align*} \pi(q)&=pq-\color{red}{C(q)}\\ \pi(q)&=pq-\color{red}{f-VC(q)}\\ \end{align*}$$` ] .pull-right[ .center[ ![:scale 90%](../images/emptywarehouse.jpg) ] ] --- # Short-Run Shut-Down Decisions .pull-left[ - Suppose firm chooses to produce **nothing** `\((q=0)\)`: - If it has **fixed costs** `\((f>0)\)`, its profits are: `$$\begin{align*} \pi(q)&=pq-C(q)\\ \pi(q)&=pq-f-VC(q)\\ \pi(0)&=-f\\ \end{align*}$$` i.e. it (still) pays its fixed costs ] .pull-right[ .center[ ![:scale 90%](../images/emptywarehouse.jpg) ] ] --- # Short-Run Shut-Down Decisions .pull-left[ - A firm should choose to produce **no output** `\((q=0)\)` only when: `$$\begin{align*} \pi \text{ from producing} &< \pi \text{ from not producing}\\ \end{align*}$$` ] --- # Short-Run Shut-Down Decisions .pull-left[ - A firm should choose to produce **no output** `\((q=0)\)` only when: `$$\begin{align*} \pi \text{ from producing} &< \pi \text{ from not producing}\\ \pi(q) &< -f \\ \end{align*}$$` ] --- # Short-Run Shut-Down Decisions .pull-left[ - A firm should choose to produce **no output** `\((q=0)\)` only when: `$$\begin{align*} \pi \text{ from producing} &< \pi \text{ from not producing}\\ \pi(q) &< -f \\ pq-VC(q)-f &<-f\\ \end{align*}$$` ] --- # Short-Run Shut-Down Decisions .pull-left[ - A firm should choose to produce **no output** `\((q=0)\)` only when: `$$\begin{align*} \pi \text{ from producing} &< \pi \text{ from not producing}\\ \pi(q) &< -f \\ pq-VC(q)-f &<-f\\ pq-VC(q) &< 0\\ \end{align*}$$` ] --- # Short-Run Shut-Down Decisions .pull-left[ - A firm should choose to produce **no output** `\((q=0)\)` only when: `$$\begin{align*} \pi \text{ from producing} &< \pi \text{ from not producing}\\ \pi(q) &< -f \\ pq-VC(q)-f &<-f\\ pq-VC(q) &< 0\\ pq &< VC(q)\\ \end{align*}$$` ] --- # Short-Run Shut-Down Decisions .pull-left[ - A firm should choose to produce **no output** `\((q=0)\)` only when: `$$\begin{align*} \pi \text{ from producing} &< \pi \text{ from not producing}\\ \pi(q) &< -f \\ pq-VC(q)-f &<-f\\ pq-VC(q) &< 0\\ pq &< VC(q)\\ \color{red}{p} & \color{red}{<} \color{red}{AVC(q)}\\ \end{align*}$$` - .hi[Shut down price]: firm will shut down production *in the short run* when `\(p<AVC(q)\)` ] .pull-right[ .center[ ![:scale 90%](../images/shutitdown.jpg) ] ] --- class: inverse, center, middle # The Firm’s Short Run Supply Decision --- # The Firm’s Short Run Supply Decision .pull-left[ <img src="1.3-slides_files/figure-html/unnamed-chunk-23-1.png" width="504" style="display: block; margin: auto;" /> ] --- # The Firm's Short Run Supply Decision .pull-left[ <img src="1.3-slides_files/figure-html/unnamed-chunk-24-1.png" width="504" style="display: block; margin: auto;" /> ] --- # The Firm's Short Run Supply Decision .pull-left[ <img src="1.3-slides_files/figure-html/unnamed-chunk-25-1.png" width="504" style="display: block; margin: auto;" /> ] --- # The Firm's Short Run Supply Decision .pull-left[ <img src="1.3-slides_files/figure-html/unnamed-chunk-26-1.png" width="504" style="display: block; margin: auto;" /> ] .pull-right[ ] --- # The Firm's Short Run Supply Decision .pull-left[ <img src="1.3-slides_files/figure-html/unnamed-chunk-27-1.png" width="504" style="display: block; margin: auto;" /> ] .pull-right[ ] --- # The Firm's Short Run Supply Decision .pull-left[ <img src="1.3-slides_files/figure-html/unnamed-chunk-28-1.png" width="504" style="display: block; margin: auto;" /> ] .pull-right[ .center[ Firm’s .red[short run supply curve]: ] `$$\begin{cases} p=MC(q) & \text{if } p \geq AVC \\ q=0 & \text{If } p < AVC\\ \end{cases}$$` ] --- # The Firm's Short Run Supply Decision .pull-left[ <img src="1.3-slides_files/figure-html/unnamed-chunk-29-1.png" width="504" style="display: block; margin: auto;" /> ] .pull-right[ .center[ Firm’s .red[short run supply curve]: ] `$$\begin{cases} p=MC(q) & \text{if } p \geq AVC \\ q=0 & \text{If } p < AVC\\ \end{cases}$$` ] --- # Summary: **1. Choose `\(q^*\)` such that `\(MR(q)=MC(q)\)`** -- **2. Profit `\(\pi=q[p-AC(q)]\)`** -- **3. Shut down if `\(p<AVC(q)\)`** -- .center[ Firm's short run (inverse) supply: ] `$$\begin{cases} p=MC(q) & \text{if } p \geq AVC\\ q=0 & \text{If } p < AVC\\ \end{cases}$$`