1.3 - Perfect Competition I

ECON 326 • Industrial Organization • Spring 2023 Ryan Safner
Associate Professor of Economics
/ safner@hood.edu
Q ryansafner/ioS23
© ioS23.classes.ryansafner.com

Outline

Short Run Production Concepts
Costs in the Short Run
Costs in the Long Run
Revenues

Recall: The Firm's Two Problems

$1^{\text {st }}$ Stage: firm's profit maximization problem:

1. Choose: < output >
2. In order to maximize: < profits >
$2^{\text {nd }}$ Stage: firm's cost minimization problem:
3. Choose: < inputs >
4. In order to minimize: < cost >
5. Subject to: < producing the optimal output >

- Minimizing costs \Longleftrightarrow maximizing profits

Visualizing Total Profit As $R(q)-C(q)$

- $\pi(q)=R(q)-C(q)$

Visualizing Total Profit As $R(q)-C(q)$

- $\pi(q)=R(q)-C(q)$

Visualizing Total Profit As $R(q)-C(q)$

- $\pi(q)=R(q)-C(q)$
- Graph: find q^{*} to $\max \pi \Longrightarrow q^{*}$ where max distance between $R(q)$ and $C(q)$

Visualizing Total Profit As $R(q)-C(q)$

- $\pi(q)=R(q)-C(q)$
- Graph: find q^{*} to $\max \pi \Longrightarrow q^{*}$ where max distance between $R(q)$ and $C(q)$
- Slopes must be equal:

$$
M R(q)=M C(q)
$$

Visualizing Total Profit As $R(q)-C(q)$

- $\pi(q)=R(q)-C(q)$
- Graph: find q^{*} to $\max \pi \Longrightarrow q^{*}$ where max distance between $R(q)$ and $C(q)$
- Slopes must be equal:

$$
M R(q)=M C(q)
$$

- At $q^{*}=5$:
- $R(q)=50$
- $C(q)=40$
- $\pi(q)=10$

Visualizing Profit Per Unit As $M R(q)$ and $M C(q)$

- At low output $q<q^{*}$, can increase π by producing more: $M R(q)>M C(q)$

Visualizing Profit Per Unit As $M R(q)$ and $M C(q)$

- At high output $q>q^{*}$, can increase π by producing less. $M R(q)<M C(q)$

Visualizing Profit Per Unit As $M R(q)$ and $M C(q)$

- π is maximized where
$M R(q)=M C(q)$

Comparative Statics

If Market Price Changes I

- Suppose the market price increases
- Firm (always setting MR=MC) will respond by producing more

If Market Price Changes II

- Suppose the market price decreases
- Firm (always setting MR=MC) will respond by producing less

The Firm's Supply Curve

- The firm's marginal cost curve is its supply curve ${ }^{\ddagger}$

$$
p=M C(q)
$$

- How it will supply the optimal amount of output in response to the market price
- Firm always sets its price equal to its marginal cost
\ddagger Mostly...there is an important exception we will see shortly!

Calculating Profit

Calculating (Average) Profit as AR(q)-AC(q)

- Profit is

$$
\pi(q)=R(q)-C(q)
$$

Calculating (Average) Profit as AR(q)-AC(q)

- Profit is

$$
\pi(q)=R(q)-C(q)
$$

- Profit per unit can be calculated as:

$$
\begin{aligned}
\frac{\pi(q)}{q} & =A R(q)-A C(q) \\
& =p-A C(q)
\end{aligned}
$$

Calculating (Average) Profit as AR(q)-AC(q)

- Profit is

$$
\pi(q)=R(q)-C(q)
$$

- Profit per unit can be calculated as:

$$
\begin{aligned}
\frac{\pi(q)}{q} & =A R(q)-A C(q) \\
& =p-A C(q)
\end{aligned}
$$

- Multiply by q to get total profit:

$$
\pi(q)=q[p-A C(q)]
$$

Calculating (Average) Profit as AR(q)-AC(q)

- At market price of $p^{*}=\$ 10$
- At $q^{*}=5$ (per unit):
- At $q^{*}=5$ (totals):

Calculating (Average) Profit as AR(q)-AC(q)

- At market price of $\mathrm{p}^{*}=\$ 10$
- At $q^{*}=5$ (per unit):
- $\operatorname{AR}(5)=\$ 10 /$ unit
- At q* $=5$ (totals):
- $R(5)=\$ 50$

Calculating (Average) Profit as AR(q)-AC(q)

- At market price of $\mathrm{p}^{*}=\$ 10$
- At $q^{*}=5$ (per unit):
- $\operatorname{AR}(5)=\$ 10 /$ unit
- $\operatorname{AC}(5)=\$ 7 /$ unit
- At q* $=5$ (totals):
- $R(5)=\$ 50$
- $C(5)=\$ 35$

Calculating (Average) Profit as AR(q)-AC(q)

- At market price of $\mathrm{p}^{*}=\$ 10$
- At $q^{*}=5$ (per unit):
- $\operatorname{AR}(5)=\$ 10 /$ unit
- $\operatorname{AC}(5)=\$ 7 /$ unit
- $A \pi(5)=\$ 3 /$ unit
- At $q^{*}=5$ (totals):
- $R(5)=\$ 50$
- $C(5)=\$ 35$
- $\pi=\$ 15$

Calculating (Average) Profit as AR(q)-AC(q)

- At market price of $p^{*}=\$ 2$
- At $q^{*}=1$ (per unit):
- At $q^{*}=1$ (totals):

Calculating (Average) Profit as AR(q)-AC(q)

- At market price of $\mathrm{p}^{*}=\$ 2$
- At $q^{*}=1$ (per unit):
- $\operatorname{AR}(1)=\$ 2 /$ unit
- At $q^{*}=1$ (totals):
- $R(1)=\$ 2$

Calculating (Average) Profit as AR(q)-AC(q)

- At market price of $\mathrm{p}^{*}=\$ 2$
- At $q^{*}=1$ (per unit):
- $\operatorname{AR}(1)=\$ 2 /$ unit
- $\operatorname{AC}(1)=\$ 10 /$ unit
- At $q^{*}=1$ (totals):
- $R(1)=\$ 2$
- $C(1)=\$ 10$

Calculating (Average) Profit as AR(q)-AC(q)

- At market price of $\mathrm{p}^{*}=\$ 2$
- At $q^{*}=1$ (per unit):
- $\operatorname{AR}(1)=\$ 2 /$ unit
- $\operatorname{AC}(1)=\$ 10 /$ unit
- $A \pi(1)=-\$ 8 / u n i t$
- At $q^{*}=1$ (totals):
- $R(1)=\$ 2$
- $C(1)=\$ 10$
- $\pi(1)=-\$ 8$

Short-Run Shut-Down Decisions

Short-Run Shut-Down Decisions

- What if a firm's profits at q^{*} are negative (i.e. it earns losses)?
- Should it produce at all?

Short-Run Shut-Down Decisions

- Suppose firm chooses to produce nothing $(q=0)$:
- If it has fixed costs $(f>0)$, its profits are:

$$
\pi(q)=p q-C(q)
$$

Short-Run Shut-Down Decisions

- Suppose firm chooses to produce nothing $(q=0)$:
- If it has fixed costs $(f>0)$, its profits are:

$$
\begin{aligned}
& \pi(q)=p q-C(q) \\
& \pi(q)=p q-f-V C(q)
\end{aligned}
$$

Short-Run Shut-Down Decisions

- Suppose firm chooses to produce nothing $(q=0)$:
- If it has fixed costs $(f>0)$, its profits are:

$$
\begin{aligned}
& \pi(q)=p q-C(q) \\
& \pi(q)=p q-f-V C(q) \\
& \pi(0)=-f
\end{aligned}
$$

i.e. it (still) pays its fixed costs

Short-Run Shut-Down Decisions

- A firm should choose to produce no output $(q=0)$ only when:
π from producing $<\pi$ from not producing

Short-Run Shut-Down Decisions

- A firm should choose to produce no output $(q=0)$ only when:
π from producing $<\pi$ from not producing

$$
\pi(q)<-f
$$

Short-Run Shut-Down Decisions

- A firm should choose to produce no output $(q=0)$ only when:
π from producing $<\pi$ from not producing

$$
\begin{array}{r}
\pi(q)<-f \\
p q-V C(q)-f<-f
\end{array}
$$

Short-Run Shut-Down Decisions

- A firm should choose to produce no output $(q=0)$ only when:
π from producing $<\pi$ from not producing

$$
\begin{aligned}
\pi(q) & <-f \\
p q-V C(q)-f & <-f \\
p q-V C(q) & <0
\end{aligned}
$$

Short-Run Shut-Down Decisions

- A firm should choose to produce no output $(q=0)$ only when:
π from producing $<\pi$ from not producing

$$
\begin{aligned}
\pi(q) & <-f \\
p q-V C(q)-f & <-f \\
p q-V C(q) & <0 \\
p q & <V C(q)
\end{aligned}
$$

Short-Run Shut-Down Decisions

- A firm should choose to produce no output $(q=0)$ only when:
π from producing $<\pi$ from not producing

$$
\begin{aligned}
\pi(q) & <-f \\
p q-V C(q)-f & <-f \\
p q-V C(q) & <0 \\
p q & <V C(q) \\
p & <A V C(q)
\end{aligned}
$$

- Shut down price: firm will shut down production in the short run when

$$
p<A V C(q)
$$

The Firm's Short Run Supply Decision

The Firm's Short Run Supply Decision

The Firm's Short Run Supply Decision

The Firm's Short Run Supply Decision

The Firm's Short Run Supply Decision

The Firm's Short Run Supply Decision

The Firm's Short Run Supply Decision

Firm's short run supply curve:

$$
\begin{cases}p=M C(q) & \text { if } p \geq A V C \\ q=0 & \text { If } p<A V C\end{cases}
$$

The Firm's Short Run Supply Decision

Firm's short run supply curve:

$$
\begin{cases}p=M C(q) & \text { if } p \geq A V C \\ q=0 & \text { If } p<A V C\end{cases}
$$

Summary:

1. Choose q^{*} such that $M R(q)=M C(q)$
2. Profit $\pi=q[p-A C(q)]$
3. Shut down if $p<A V C(q)$

Firm's short run (inverse) supply:

$$
\begin{cases}p=M C(q) & \text { if } p \geq A V C \\ q=0 & \text { If } p<A V C\end{cases}
$$

