1.4 — Perfect Competition II ECON 326 • Industrial Organization • Spring 2023 Ryan Safner

Associate Professor of Economics

✓ <u>safner@hood.edu</u>

ryansafner/ioS23

Solution in the interaction of t

Outline

Short Run Production Concepts

Costs in the Short Run

Costs in the Long Run

<u>Revenues</u>

Firm's Long Run Supply Decisions

Firm Decisions in the Long Run I

- $AC(q)_{min}$ at a market price of \$6
 - Firm earns **"normal" economic profits**
- At any market price **below** \$6.00, firm earns **losses**
 - $\circ~$ Short Run: firm shuts down if p < AVC(q)
- At any market price **above** \$6.00, firm earns "supernormal" profits (>0)

Firm Supply Decisions in the Short Run vs. Long Run

• Short run: firms that shut down

 $(q^*=0)$ stuck in market, incur fixed costs $\pi=-f$

Firm Supply Decisions in the Short Run vs. Long Run

- Short run: firms that shut down $(q^*=0)$ stuck in market, incur fixed costs $\pi=-f$
- Long run: firms earning losses $(\pi < 0)$ can exit the market and earn $\pi = 0$
 - $\circ\;$ No more fixed costs, firms can sell/abandon f at $q^*=0$

Firm Supply Decisions in the Short Run vs. Long Run

- Short run: firms that shut down $(q^*=0)$ stuck in market, incur fixed costs $\pi=-f$
- Long run: firms earning losses $(\pi < 0)$ can exit the market and earn $\pi = 0$
 - $\circ~$ No more fixed costs, firms can sell/abandon f at $q^*=0$
- Entrepreneurs not *currently* in market can enter and produce, if entry would earn them $\pi>0$

Firm's Long Run Supply: Visualizing

When $p < AVC\,$

- Profits are *negative*
- Short run: shut down production
 - $\circ~$ Firm loses more π by producing than by not producing
- Long run: firms in industry **exit** the industry
 - *No* new firms will *enter* this industry

Firm's Long Run Supply: Visualizing

When AVC

- Profits are *negative*
- Short run: continue production
 - $\circ~$ Firm loses $\mathit{less}\,\pi$ by producing than by $\mathit{not}\,\mathrm{producing}$
- Long run: firms in industry **exit** the industry
 - *No* new firms will *enter* this industry

Firm's Long Run Supply: Visualizing

When AC < p

- Profits are *positive*
- Short run: continue production
 - Firm earning profits
- Long run: firms in industry **stay** in industry
 - $\circ~$ New firms will enter this industry

Profit Maximization Rules for Firms:

1. Choose q^st such that MR(q)=MC(q)

2. Profit $\pi = q[p - AC(q)]$

3. Shut down in *short run* if p < AVC(q)

 $AVC(q)_{min} = MC(q)$

Firm's short run supply curve:

 $egin{cases} p = MC(q) & ext{if} \ p \geq AVC \ q = 0 & ext{If} \ p < AVC \end{cases}$

4. Exit in *long run* if \\(p<AC(q)\\)

 $AC_{min}(q) = MC(q)$

Market Entry and Exit

Exit, Entry, and Long Run Industry Equilibrium I

- Now we must combine optimizing individual firms with market-wide adjustment to equilibrium
- Since $\pi = [p AC(q)]q$, in the **long run**, profit-seeking firms will:

Exit, Entry, and Long Run Industry Equilibrium I

- Now we must combine optimizing individual firms with market-wide adjustment to equilibrium
- Since $\pi = [p AC(q)]q$, in the **long run**, profit-seeking firms will:
 - $\circ\,\,$ Enter markets where p>AC(q)

Exit, Entry, and Long Run Industry Equilibrium I

- Now we must combine optimizing individual firms with market-wide adjustment to equilibrium
- Since $\pi = [p AC(q)]q$, in the **long run**, profit-seeking firms will:
 - $\,\circ\,$ Enter markets where p>AC(q)
 - $\circ~$ Exit markets where p < AC(q)

Exit, Entry, and Long Run Industry Equilibrium II

• Long-run equilibrium: entry and exit ceases when p = AC(q) for all firms, implying normal economic profits of $\pi = 0$

Exit, Entry, and Long Run Industry Equilibrium II

- Long-run equilibrium: entry and exit ceases when p = AC(q) for all firms, implying normal economic profits of $\pi = 0$
- Long run economic profits for all firms in a *competitive* industry are 0
- Firms must earn an *accounting* profit to stay in business

Deriving the Industry Supply Curve

The Industry Supply Curve

• Industry supply curve: horizontal sum of all individual firms' supply curves

 $\circ\;$ recall: (MC(q) curve above $AVC_{min})$ (shut down price)

- To keep it simple on the following slides:
 - $\circ\,$ assume no fixed costs, so AC(q) = AVC(q)
 - $\circ\,$ then industry supply curve is sum of individual MC(q) curves above $AC(q)_{min}$

• Industry supply curve is the horizontal sum of all individual firm's supply curves

• Which are each firm's marginal cost curve above its breakeven price

• Industry demand curve (where equal to supply) sets market price, demand for firms

• Short Run: each firm is earning profits p > AC(q)

- Long run: induces entry by firm 3, firm 4, $\cdot \cdot \cdot$, firm n
- Long run industry equilibrium:

• Short Run: each firm is earning profits p > AC(q)

- Long run: induces entry by firm 3, firm 4, $\cdot \cdot \cdot$, firm n
- Long run industry equilibrium: $p = AC(q)_{min}$, $\pi = 0$ at p = \$6; supply becomes more elastic

Economic Rents, Profits, & Competition

 Recall, we've essentially defined a firm as a completely replicable recipe (production function) of resources

q=f(L,K)

• "Any idiot" can enter market, buy required (L,K) at prices (w,r), produce q^* at market price p and earn the market rate of π

- Zero long run economic profit ≠ industry disappears, just stops growing
- Less attractive to entrepreneurs & start ups to enter than other, more profitable industries
- These are **mature** industries (again, often commodities), the backbone of the economy, just not *sexy*!

- All factors are paid their market price
 - i.e. their opportunity cost what they could earn *elsewhere* in economy
- Firms earn normal market rate of return
 - No *excess* rewards (economic profits)
 to attract *new* resources into the
 industry, nor *losses* to push resources
 out of industry

- But we've so far been imagining a market where every firm is *identical*, just a recipe "any idiot" can copy
- What about if firms have *different* technologies or costs?

Industry Supply Curves (*Different* Firms) I

- Firms have <u>different</u> technologies/costs due to relative differences in:
 - Managerial talent
 - Worker talent
 - \circ Location
 - First-mover advantage
 - Technological secrets/IP
 - License/permit access
 - Political connections
 - \circ Lobbying
- Let's derive **industry supply curve** again, and see how this may affect profits

Industry Supply Curves (*Different* Firms) II

- Industry supply curve is the horizontal sum of all individual firm's supply curves
 - Which are each firm's marginal cost curve above its breakeven price

Industry Supply Curves (*Different* Firms) II

- Industry demand curve (where equal to supply) sets market price, demand for firms
- Long run industry equilibrium: $p = AC(q)_{min}$, $\pi = 0$ for marginal (highest cost) firm (Firm 2)
- Firm 1 (lower cost) appears to be earning **profits**...(we'll come back to this)

Economic Rents and Zero Economic Profits I

- Long-run equilibrium $p = AC(q)_{min}$ of the *marginal (highest-cost)* firm
- The marginal firm earns normal economic profit (of zero)
 - \circ Otherwise, if p > AC(q) for that firm, would induce *more* entry into industry!
- Generalized, No-Profitable Entry Condition: in equilibrium, no firm can earn positive profits by entering the industry

Economic Rents and Zero Economic Profits I

- "Inframarginal" (lower-cost) firms are using resources that earn economic rents
 - returns higher than their opportunity cost (what is needed to bring them into *this* industry)
- Economic rents arise from **relative differences** between resources

Economic Rent

- Economic rent: a return or payment for a resource above its normal market return (opportunity cost)
- Has no allocative effect on resources, entirely "inframarginal"
- A windfall return that resource owners get for free

Sources of Economic Rents

- Some factors are relatively scarce *in the whole economy*
 - (talent, location, secrets, IP, licenses, being first, political favoritism)

Firms Using Resources with Economic Rents

- Inframarginal firms that employ these scarce factors gain a short-run profits from having lower costs/higher productivity
- ...But what will happen to the prices for their scarce factors over time?

Economic Rents Examples

Economic Rents and Zero Economic Profits

- In a competitive market, over the long run, **profits are dissipated through competition**
 - Rival firms willing to pay for the scarce factor to gain an advantage
- Competition over acquiring the scarce factors pushes up their prices
 - i.e. higher costs to firms of using the factor!
- Rents are included in the opportunity cost (price) for inputs over long run
 - Must pay a factor enough to keep it *out of other uses*

Economic Rents and Zero Economic Profits

- From the firm's perspective, over the long-run, rents are included in the price (opportunity cost) of the scarce factor
 - Must pay a factor enough to keep it out of other uses
- Firm <u>does not earn the rents</u>, they raise firm's costs and squeeze profits to zero!

Economic Rents Reduce Firms' Profits Over Long Run

• Short Run: firm that possesses scarce rent-generating factors has lower costs, perhaps short-run profits

Economic Rents Reduce Firms' Profits Over Long Run

• Short Run: firm that possesses scarce rent-generating factors has lower costs, perhaps short-run profits

- Long run: competition over those factors pushes up their prices, raising costs to firm, until its profits go to zero as well
 - Increase in *fixed* cost (scarce factor), raising AC(q), which now includes rents (more info in <u>appendix</u>)

Economic Rents Go To Resource Owners

- Owners of scarce factors (workers, landowners, inventors, etc) earn the rents as higher income for their services (wages, land rent, interest, royalties, etc).
- Often induces competition to supply alternative factors, which *may* dissipate the rents (to zero)
 - More workers invest in becoming talented, try to create new inventions, build new land, etc.

Recall: Accounting vs. Economic Point of View

- Recall "economic point of view":
- Producing *your* product pulls scarce resources *out of other productive uses* in the economy
- **Profits attract resources**: pulled out of other (less valuable) uses
- Losses repel resources: pulled away to other (more valuable) uses
- Zero profits keep resources where they are
 - Implies society is using resources optimally

Example

Example: Daniel's Midland Archers has the following cost structure for producing archery bows:

$$C(q)=2q^2+3q+50 \ MC(q)=4q+3$$

Suppose the market is very competitive and the current market price is \$15.

1. How many bows should the firm produce?

- 2. How much profit will it earn per day?
- 3. At what price would the firm break even?
- 4. At what price should the firm shut down in the short run?

5. Write equations for firm's short-run supply curve and long-run supply curve.

Welfare Effects of Perfect Competition

Perfectly Competitive Market

- In a competitive market in long run equilibrium:
 - Economic profit is driven to \$0; resources (factors of production) optimally allocated
 - Allocatively efficient: p = MC(q), maximized CS + PS
 - **Productively efficient:** $p = AC(q)_{min}$ (otherwise firms would enter/exit)

Market-Clearing Prices

 Supply and demand set the marketclearing price for all units exchanged (bought and sold)

Consumer Surplus I

- **Demand function** measures how much you would *hypothetically* be willing to pay for various quantities
 - "reservation price"
- You often *actually* pay (the market-clearing price, p^*) a lot less than your reservation price
- The difference is **consumer surplus**

$$CS = WTP - p^*$$

Consumer Surplus II

$$CS = rac{1}{2}bh
onumber \\ CS = rac{1}{2}(5-0)(\$10-\$5)
onumber \\ CS = \$12.50$$

Producer Surplus I

• **Supply function** measures how much you would *hypothetically* be willing to accept to sell various quantities

• "reservation price"

- You often *actually* receive (the marketclearing price, p^*) a lot more than your reservation price
- The difference is **producer surplus**

 $PS = p^* - WTA$

Market Efficiency in Competitive Equilibrium I

- Allocative efficiency: resources are allocated to highest-valued uses
 - $\circ\,$ Goods produced up to the point where $MB=MC\,(p=MC)$
- All potential gains from trade are fully exhausted

Market Efficiency in Competitive Equilibrium II

- Economic surplus = Consumer surplus + Producer surplus
- Maximized in competitive equilibrium
- Resources flow away from those who value them the lowest to those that value them the highest
- The social value of resources is maximized by allocating them to their highest valued uses!

