2.2 - Cournot Competition

ECON 326 • Industrial Organization • Spring 2023 Ryan Safner
Associate Professor of Economics
/ safner@hood.edu
© ryansafner/ioS23
© ioS23.classes.ryansafner.com

Models of Oligopoly

Three canonical models of Oligopoly

1. Bertrand competition

- Firms simultaneously compete on price

2. Cournot competition

- Firms simultaneously compete on quantity

3. Stackelberg competition

- Firms sequentially compete on quantity

Cournot Competition on Moblab

Cournot Competition on Moblab

- Each of you is a firm selling identical scooters
- Each season, each firm chooses its quantity to produce
- You pay a cost for each you produce (identical across all firms)
- Market price depends on total industry output
- More total output \Longrightarrow lower market price
- Market price is revealed after all firms have chosen their output

Cournot Competition on Moblab

- We will play 4 times:

1. You are the only firm (monopoly)
2. You will be matched with another firm (duopoly)
3. You will be matched with 2 other firms (triopoly)
4. The entire class is competing in the same market

- Each instance will have 3 rounds

Cournot's Model

Cournot

Antoine Augustin Cournot

- 1838 Researches on the Mathematical Principles of the Theory of Wealth
- First writer to:
- use and advocate mathematics for study of political economy
- relate demand and supply as functions of price and quantity
- draw a demand and supply graph
- use marginal analysis to find profit-maximizing output: where marginal revenue $=$ marginal cost
- Sadly, no influence in his lifetime, but enormous consequence on neoclassical economics

Cournot's Model

- Chapter V "Of Monopoly", studies a monopoly supplier of mineral water who prices to maximize profit
- $M R=M C$

Antoine Augustin Cournot
1801-1877

Cournot's Model

Antoine Augustin Cournot
"Let us now imagine two proprietors and two springs of which qualities are identical and which on account of their similar positions supply the same market in competition."
"In this case the price is necessarily the same for each proprietor."
"If p is the price, $D=F(p)$ the total sales, D_{1} the sales from the spring (1), and D_{2} the sales from the spring (2), then $D_{1}+D_{2}=D$."

- Chapter VII "Of Competition of Producers"

Cournot's Model

Antoine Augustin Cournot
1801-1877
"If, to begin with, we neglect the cost of production, the respective incomes of the proprietors will be $p D_{1}$ and $p D_{2}$ and...each of them independently will seek to make this income as large as possible."
"[But] [p]roprietor (1) can have no direct influence on the determination of D_{2}."
"All that he can do when D_{2} has been determined by proprietor (2) is to choose for D_{1} the value which is best for him. This he will be able to accomplish by properly adjusting his price...except as proprietor (2), who seeing himself forced to accept his price and this value of D_{2}, may adopt a new value for D_{2} more favorable ot his interests than the preceding one."

Cournot Competition

- We use modern game theory and Nash equilibrium to make Cournot's model a static game (for now)
- "Cournot competition": two (or more) firms compete on quantity to sell the same good
- Firms set their quantities simultaneously
- Firms' joint output determines the market price faced by all firms

Antoine Augustin Cournot
1801-1877

Cournot Competition: Mechanics

- Suppose two firms (1 and 2), each have an identical constant cost

$$
M C(q)=A C(q)=c
$$

- Firm 1 and Firm 2 simultaneously set quantities, q_{1} and q_{2}
- Total market demand is given by

$$
\begin{aligned}
& P=a-b Q \\
& Q=q_{1}+q_{2}
\end{aligned}
$$

Cournot Competition: Mechanics

- Firm 1's profit is given by:

$$
\begin{aligned}
& \pi_{1}=q_{1}(P-c) \\
& \pi_{1}=q_{1}\left(a-b\left(q_{1}+q_{2}\right)-c\right)
\end{aligned}
$$

- And, symmetrically same for firm 2
- Note each firm's profits depend (in part) on the output of the other firm!

Residual Demand

- Consider the demand each firm faces to be a residual demand
- e.g. for firm 1, it's (residual) demand is:

$$
\begin{aligned}
& p=a-b\left(q_{1}+q_{2}\right) \\
& p=\underbrace{\left(a-b q_{2}\right)}_{\text {intercept }}-\underbrace{b}_{\text {slope }} q_{1}
\end{aligned}
$$

- Firm 2 will produce some amount, q_{2}.
- Firm 1 takes this as given, to find its own residual demand
- Intercept: $a-b q_{2}$
- Slope: b (coefficient in front of q_{1})

Residual Demand

- Firm 2 will produce some amount, q_{2}.
- Firm 1 will take this as a given, a constant
- Firm 1's choice variable is q_{1}, given q_{2}

Cournot Competition: Example

Example: Assume Coke (c) and Pepsi (p) are the only two cola producers, each with a constant $M C=A C=\$ 0.50$. The market (inverse) demand curve is given by:

$$
\begin{aligned}
& P=5-0.05 Q \\
& Q=q_{c}+q_{p}
\end{aligned}
$$

$$
\begin{gathered}
P=5-0.05 Q \\
P=5-0.05 q_{c}-0.05 q_{p}
\end{gathered}
$$

Cournot Competition: Example

$$
P=5-0.05 q_{c}-0.05 q_{p}
$$

- Firms maximize profit (as always), by setting $q^{*}: M R(q)=M C(q)$

Cournot Competition: Example

$$
P=\underbrace{5-0.05 q_{p}}_{\text {intercept }}-\underbrace{0.05}_{\text {slope }} q_{c}
$$

- Firms maximize profit (as always), by setting $q^{*}: M R(q)=M C(q)$
- Solve for Coke's MR(q) first:
- Take q_{p} as given, a constant
- Recall MR is twice the slope of demand

$$
M R_{c}=5-0.05 q_{p}-0.10 q_{c}
$$

Cournot Competition: Example

- Solve for q^{*} for each firm (where $M R(q)=M C(q)$), we derive each firm's reaction function or best response function to the other firm's output
- Symmetric marginal costs and marginal revenues

$$
\begin{aligned}
& q_{c}^{*}=45-0.5 q_{p} \\
& q_{p}^{*}=45-0.5 q_{c}
\end{aligned}
$$

Coke's Reaction Curve

We can graph Coke's reaction curve to Pepsi's output

Coke's Reaction Curve

We can graph Coke's reaction curve to Pepsi's output

- e.g. if Pepsi produces 40, Coke's best response is 25

Coke's Reaction Curve

We can graph Coke's reaction curve to Pepsi's output

- e.g. if Pepsi produces 40, Coke's best response is 25
- e.g. if Pepsi produces 20, Coke's best response is 35

Pepsi's Reaction Curve

We can graph Pepsi's reaction curve to
Coke's output

Pepsi's Reaction Curve

We can graph Pepsi's reaction curve to
Coke's output

- e.g. if Coke produces 40, Pepsi's best response is 25

Pepsi's Reaction Curve

We can graph Pepsi's reaction curve to
Coke's output

- e.g. if Coke produces 40, Pepsi's best response is 25
- e.g. if Coke produces 20, Pepsi's best response is 35

Cournot-Nash Equilibrium, Graphically

Combine both curves on the same graph

- Cournot-Nash Equilibrium:

$$
(20,20)
$$

- Where both reaction curves intersect
- Both are playing mutual best response to one another

Cournot-Nash Equilibrium, Algebraically

- Cournot-Nash Equilibrium algebraically: plug one firm's reaction function into the other's

$$
\begin{aligned}
& q_{c}^{*}=30-0.5 q_{p} \\
& q_{p}^{*}=30-0.5 q_{c}
\end{aligned}
$$

- The market demand again was

$$
P=200-3 q_{c}-3 q_{p}
$$

Cournot-Nash Equilibrium, Algebraically

- Both firms produce 20

$$
\begin{aligned}
& P=200-3(20)-3(20) \\
& P=\$ 80
\end{aligned}
$$

- Find profit for each firm:

$$
\begin{aligned}
& \pi_{c}=q_{c}(P-c) \\
& \pi_{c}=20(80-20) \\
& \pi_{c}=1,200
\end{aligned}
$$

- Symmetrically for Pepsi, $\pi_{p}=1,200$

Cournot-Nash Equilibrium, The Market

Cournot Collusion

- Suppose now both firms collude to act like a monopolist, who sets the entire market:

$$
\begin{aligned}
M R & =M C \\
5-0.1 Q & =0.50 \\
45 & =Q^{*}
\end{aligned}
$$

- The monopoly price will then be:

$$
\begin{aligned}
& P=5-0.05(45) \\
& P=\$ 2.75
\end{aligned}
$$

- Total profit will then be:

$$
\Pi=45(\$ 2.75-\$ 0.50)=\$ 101.25
$$

Cournot Collusion

- Cournot Competition: each firm produces 30 and earns $\$ 45.00$
- Collusion/Monopoly: each firm produces 22.5 and earns $\$ 50.63$

Cournot Collusion

- Cournot Competition: each firm produces 30 and earns $\$ 45.00$
- Collusion/Monopoly: each firm produces 22.5 and earns \$50.63
- But is collusion a Nash equilibrium?

Cournot Collusion

- Read either firm's reaction curve at the collusive outcome
- Suppose Coke knows Pepsi is producing 22.5 (as per the cartel agreement)
- Coke's best response to Pepsi's 22.5 is to produce 33.75

Cournot Collusion

- This (cheating the agreement) would bring market price to

$$
\begin{aligned}
& P=5-0.05\left(q_{c}+q_{p}\right) \\
& P=5-0.05 *(33.75+22.50) \\
& P=5-0.05 *(56.25) \\
& P=\$ 2.1875
\end{aligned}
$$

- Coke's profit would be:

$$
\begin{aligned}
& \pi_{c}=q_{c}(P-c) \\
& \pi_{c}=33.75(2.1875-0.50) \\
& \pi_{c}=\$ 56.95
\end{aligned}
$$

- Pepsi's profit would be:

$$
\begin{aligned}
& \pi_{p}=P q_{p}(P-c) \\
& \pi_{p}=22.5(2.1875-0.50) \\
& \pi_{p}=\$ 37.97
\end{aligned}
$$

Cournot Collusion, The Market

Cournot Competition, You Try

Example: Suppose Firm 1 and Firm 2 have a constant $M C=A C=8$. The market (inverse) demand curve is given by:

$$
\begin{aligned}
& P=200-2 Q \\
& Q=q_{1}+q_{2}
\end{aligned}
$$

1. Find the Cournot-Nash equilibrium output and profit for each firm.
2. Find the output and profit for each firm if the two were to collude.
