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Reframing Oligopoly Theory



The “classic” models of oligopoly (Cournot & Bertrand) have
signi�cant �aws

Primarily: static games where players only interact once
In reality, players continue interacting and change
behavior in response to previous observed behavior!

Cournot ignored the possibility of collusion (we considered it
alongside Cournot's model)

Introduced by Edward Chamberlin (1933) — The Theory of
Monopolistic Competition
It's in the interest of the �rms to �nd a way to collude!

Reframing Oligopoly Theory



Consider a pro�t possibilities frontier
between Coke and Pepsi should they
collude

Using our conditions from Cournot (2.2)

Point C: Cournot-Nash equilibrium

Each �rm produces 30, gets $45 in pro�t

Points , , if Coke or Pepsi were a
monopolist, respectively

One �rm produces 45 (other 0), gets
$101.25 in pro�t

Reaching a Collusive Bargain

Mc Mp



Anything northeast of C is a Pareto
improvement (for the �rms)

A bargaining problem between Coke and
Pepsi

Coke would prefer point E, Pepsi point D,
point F is a 50:50 split

But in any case, a lot of room for a
mutually-bene�cial agreement to
cooperate instead of (Cournot)
competing

Reaching a Collusive Bargain



George Stigler

1911—1991

Economics Nobel 1982

“The present paper accepts the hypothesis that
oligopolists wish to collude to maximize joint pro�ts. It
seeks to reconcile this wish with the facts, such as that
collusion is impossible for many �rms and collusion is
much more effective in some circumstances than in
others. The reconciliation is found in the problem of
policing a collusive agreement, which proves to be a
problem in the theory of information,” (44).

Stigler, George J, 1964, “A Theory of Oligopoly,” Journal of Political Economy 72(1): 44-61

Reframing Oligopoly Theory



George Stigler

1911—1991

Economics Nobel 1982

“We shall show that collusion normally involves much
more than ‘the’ price...The colluding �rms must agree
upon the price structure appropriate to the transaction
classes which they are prepared to recognize. A complete
pro�t-maximizing price structure may have almost
in�nitely numerous price classes: the �rms will have to
decide upon the number of price classes in the light of
the costs and returns from tailoring prices to the diversity
of transactions,” (44-46).

Stigler, George J, 1964, “A Theory of Oligopoly,” Journal of Political Economy 72(1): 44-61

Reframing Oligopoly Theory



George Stigler

1911—1991

Economics Nobel 1982

“Let us assume that the collusion has been effected, and a price
structure agreed upon. It is a well-established proposition that if
any member of the agreement can secretly violate it, he will gain
larger pro�ts than by conforming to it. It is, moreover, surely one
of the axioms of human behavior that all agreements whose
violation would be pro�table to the violator must be enforced.
The literature of collusive agreements...is replete with instances
of the collapse of conspiracies because of ‘secret’ price-cutting.
This literature is biased: conspiracies that are successful in
avoiding an amount of price-cutting which leads to collapse of
the agreement are less likely to be reported or detected. But no
conspiracy can neglect the problem of enforcement,” (46)

Stigler, George J, 1964, “A Theory of Oligopoly,” Journal of Political Economy 72(1): 44-61

Reframing Oligopoly Theory



George Stigler

1911—1991

Economics Nobel 1982

“Enforcement consists basically of detecting signi�cant
deviations from the agreed-upon prices. Once detected, the
deviations will tend to disappear because they are no longer
secret and will be matched by fellow conspirators if they are not
withdrawn. If the enforcement is weak, however — if price-cutting
is detected only slowly and incompetently — the conspiracy must
recognize its weakness: it must set prices not much above the
competitive level so the inducements to price-cutting are small...”
(46).

Stigler, George J, 1964, “A Theory of Oligopoly,” Journal of Political Economy 72(1): 44-61

Reframing Oligopoly Theory



George Stigler

1911—1991

Economics Nobel 1982

“Policing the collusion sounds very much like the subtle and
complex problem presented in a good detective story. [But] there
is a difference: In our case the man who murders the collusive
price will recieve the bequest of patronage. The basic method of
detection of a price-cutter must be the fact that he is getting
business he would not otherwise obtain,” (47).

Stigler, George J, 1964, “A Theory of Oligopoly,” Journal of Political Economy 72(1): 44-61

Reframing Oligopoly Theory



George Stigler

1911—1991

Economics Nobel 1982

We should focus oligopoly theory less on static models of
Cournot/Bertrand/etc competition

Focus more on examining the types of conditions where �rms
can effectively form and maintain collusive agreements, and
conditions where agreements break down into competition

Stigler (1964) speci�cally focused on the problem of a
cartel policing against “secret price cutting”

Consider more of a dynamic game of cooperation and/or
competition between �rms

Reframing Oligopoly Theory



More Game Theory



See my game theory course for more

There's a lot more to game theory than a
one-shot prisoners' dilemma:

one shot vs. repeated game

discrete vs. continuous strategies

perfect vs. imperfect vs.
incomplete/asymmetric information

simultaneous vs. sequential games

Game Theory: Some Generalizations

https://gamef21.classes.ryansafner.com/


We use various “solution concepts” to allow us
to predict an equilibrium of a game

Nash Equilibrium is the primary solution concept

Note it has many variants depending on
type of game!

Recall, Nash Equilibrium: no players want to
change their strategy given what everyone else
is playing

All players are playing a best response to
each other

Solution Concepts



Important about Nash equilibrium:

�. N.E.  the “best” or optimal outcome

Recall the Prisoners' Dilemma!

�. Game may have multiple N.E.

�. Game may have no N.E. (in “pure”
strategies)

Solution Concepts: Nash Equilibrium

≠



A Coordination Game
No dominant strategies

Example: Coordination Game



Two Nash equilibria: (A,A) and (B,B)
Either just as good
Coordination is most important

Example: Coordination Game



Two general methods to solve for Nash
equilibria:

1) Cell-by-Cell Inspection: look in each cell,
does either player want to deviate?

If no: a Nash equilibrium
If yes: not a Nash equilibrium

Example: Coordination Game



Two general methods to solve for Nash
equilibria:

2) Best-Response Analysis: take the
perspective of each player. If the other
player plays a particular strategy, what is
your strategy(s) that gets you the highest
payoff?

Ties are allowed
Any cell where both players are playing a
best response is a Nash Equilibrium

Example: Coordination Game



Player 1's best responses

Two general methods to solve for Nash
equilibria:

2) Best-Response Analysis: take the
perspective of each player. If the other
player plays a particular strategy, what is
your strategy(s) that gets you the highest
payoff?

Ties are allowed
Any cell where both players are playing a
best response is a Nash Equilibrium

Example: Coordination Game



Player 2's best responses

Two general methods to solve for Nash
equilibria:

2) Best-Response Analysis: take the
perspective of each player. If the other
player plays a particular strategy, what is
your strategy(s) that gets you the highest
payoff?

Ties are allowed
Any cell where both players are playing a
best response is a Nash Equilibrium

Example: Coordination Game



N.E.: each player is playing a best response

Two general methods to solve for Nash
equilibria:

2) Best-Response Analysis: take the
perspective of each player. If the other
player plays a particular strategy, what is
your strategy(s) that gets you the highest
payoff?

Ties are allowed
Any cell where both players are playing a
best response is a Nash Equilibrium

Example: Coordination Game



Two Nash equilibria again: (A,A) and (B,B)

But here (A,A)  (B,B)!

A Change in the Game

≻



Path Dependence: early choices may
affect later ability to choose or switch

Lock-in: the switching cost of moving
from one equilibrium to another
becomes prohibitive

Suppose we are currently in equilibrium
(B,B)

Inef�cient lock-in:

Standard A is superior to B
But too costly to switch from B to A

A Change in the Game



Introduction to Sequential Games



Consider a sequential game of Cournot
competition between Coke and Pepsi

Coke moves �rst, then Pepsi, then the
game ends

Each player can:

Cooperate: produce cartel quantity
(22.5)
Defect: produce Cournot quantity (30)

Sequential Games



Designing a game tree:

Decision nodes: decision point for each
player

Solid nodes, I've labeled and color-
coded by player (C.1, P.1, P.2)

Terminal nodes: outcome of game, with
payoff for each player (pro�ts)

Hollow nodes, no further choices

Sequential Games



Four possible outcomes:

�. (Cooperate, Cooperate): 50, 50
�. (Cooperate, Defect): 38, 57
�. (Defect, Cooperate): 57, 38
�. (Defect, Defect): 45, 45

Sequential Games



(“Pure”) strategy : a player’s complete
plan of action for every possible
contingency

i.e. what player will choose at every
possible decision node, even if it’s
never reached

Think of a strategy like an algorithm:

If we reach node 1, then I will play
X; if we reach node 2, then I will
play Y; if...

 “Pure” is meant to contrast against “mixed” strategies, where players take a range of

actions according to a probability distribution. That's beyond the scope of this class.

Strategies

†

†



Coke has  possible strategies:
�. Cooperate at C.1
�. Defect at C.1

Strategies

21 = 2



Coke has  possible strategies:

�. Cooperate at C.1
�. Defect at C.1

Pepsi has  possible strategies:

�. (Cooperate at P.1, Cooperate at P.2)
�. (Cooperate at P.1, Defect at P.2)
�. (Defect at P.1, Cooperate at P.2)
�. (Defect at P.1, Defect at P.2)

Strategies

21 = 2

22 = 4



Solve a sequential game by “backward
induction” or “rollback”

To determine the outcome of the game, start
with the last-mover (i.e. decision nodes just
before terminal nodes) and work to the
beginning

A process of considering “sequential
rationality”:

“If I play X, my opponent will respond
with Y; given their response, do I really
want to play X?”

What is that mover's best choice to maximize
their payoff?

Solving the Game: Backward Induction



We start at P.1 where Pepsi can:

Cooperate to yield outcome (50, 50)
Defect to yield outcome (38, 57)

And P.2 where Pepsi can:

Cooperate to yield outcome (57, 38)
Defect to yield outcome (45, 45)

Solving the Game: Backward Induction



Pepsi will Defect if the game reaches
node P.1 and Defect if the game reaches
node P.2

Recognizing this, what will Coke do?

Solving the Game: Backward Induction



Work our way up to C.1 where Coke can:
Cooperate, knowing Pepsi will Defect,
to yield outcome (38, 57)
Defect, knowing Pepsi will Defect, to
yield outcome (45, 45)

Solving the Game: Backward Induction



Nash Equilibrium:

(Defect, (Defect, Defect))

Solving the Game: Backward Induction



As we work backwards, we can prune the
branches of the game tree

Highlight branches that players will
choose
Cross out branches that players will
not choose

Equilibrium path of play is highlighted
from the root to one terminal node

All other paths are not taken

Solving the Game: Pruning the Tree



Repeated Games



A true prisoners' dilemma:

Each player's preferences:

1  best: you Defect, they Coop. ("temptation
payoff")
2  best: you both Coop.
3  best: you both Defect
4  best: you Coop., they Defect ("sucker's
payoff")

Nash equilibrium: (Defect, Defect)

(Coop., Coop.) an unstable Pareto
improvement

Prisoners' Dilemma, Reprise

a > b > c > d

st

nd

rd

th



We'll stick with these speci�c payoffs for
this lesson

How can we sustain cooperation in
Prisoners' Dilemma?

Prisoners' Dilemma: How to Sustain Cooperation?



Analysis of games can change when players
encounter each other more than once

Repeated games: the same players play the
same game multiple times, two types:

Players know the history of the game with each
other

Finitely-repeated game: has a known �nal round

In�nitely-repeated game: has no (or an
unknown) �nal round

Repeated Games: Finite and In�nite



Finitely-Repeated Games



Suppose a prisoners' dilemma is played for
2 rounds

Apply backwards induction:

What should each player do in the �nal
round?

Finitely-Repeated Prisoners' Dilemma



Suppose a prisoners' dilemma is played for
2 rounds

Apply backwards induction:

What should each player do in the �nal
round?
Play dominant strategy: Defect
Knowing each player will Defect in
round 2/2, what should they do in
round 1?

Finitely-Repeated Prisoners' Dilemma



Suppose a prisoners' dilemma is played for
2 rounds

Apply backwards induction:

What should each player do in the �nal
round?
Play dominant strategy: Defect
Knowing each player will Defect in
round 2/2, what should they do in
round 1?

No bene�t to playing Cooperate
No threat punish Defection!

Finitely-Repeated Prisoners' Dilemma



Suppose a prisoners' dilemma is played for
2 rounds

Apply backwards induction:

Both Defect in round 1 (and round 2)

No value in cooperation over time!

Finitely-Repeated Prisoners' Dilemma



Paradox of repeated games: for any game
with a unique Nash equilibrium (in pure
strategies) in a one-shot game, as long as
there is a known, �nite end, Nash
equilibrium is the same

Sometimes called Selten’s “chain-store
paradox” from a famous paper by Reinhard
Selten (1978)

In experimental settings, we tend to see
people cooperate in early rounds, but close
to the �nal round (if not the actual �nal
round), defect on each other

Finitely-Repeated Prisoners' Dilemma



In�nitely-Repeated Games



Finitely-repeated games are interesting, but
rare

How often do we know for certain when
a game/relationship we are in will end?

Some predictions for �nitely-repeated
games don't hold up well in reality

We often play games or are in relationships
that are inde�nitely repeated (have no
known end), we call them in�nitely-
repeated games

“In�nitely”-Repeated Games



There are two nearly identical
interpretations of in�nitely repeated
games:

�. Players play forever, but discount
(payoffs in) the future by a constant
factor

�. Each round the game might end with
some constant probability

In�nitely-Repeated Games



Since we are dealing with payoffs in the
future, we have to consider players' time
preferences

Easiest to consider with monetary
payoffs and the time value of money that
underlies �nance

First Intepretation: Discounting the Future

PV =
FV

(1 + r)t

FV = PV (1 + r)t



Example: what is the present value of
getting $1,000 one year from now at 5%
interest?

Present vs. Future Goods

PV =

PV =

PV =

PV = $952.38

FV

(1 + r)n

1000

(1 + 0.05)1

1000

1.05



Example: what is the future value of
$1,000 lent for one year at 5% interest?

Present vs. Future Goods

FV = PV (1 + r)n

FV = 1000(1 + 0.05)1

FV = 1000(1.05)

FV = $1, 050



Suppose a player values $1 now as being
equivalent to some amount with interest

 one period later

i.e. $1 with an r% interest rate over
that period

The “discount factor” is , the
ratio that future value must be multiplied
to equal present value

Discounting the Future

1(1 + r)

δ = 1
1+r



If  is low  is high)

Players regard future money as worth much
less than present money, very impatient
Example: , future money is worth
20% of present money

If  is high  is low)

Players regard future money almost the
same as present money, more patient
Example: , future money is worth
80% of present money

Discounting the Future

$1 now = δ $1 later

δ (r

δ = 0.20

δ (r

δ = 0.80



Discounting the Future

Example: Suppose you are indifferent between having $1 today and $1.10 next period

There is an implied interest rate of 

$1 at 10% interest yields $1.10 next period

$1 today = δ$1.10 next period

= δ

0.91 ≈ δ

$1

$1.10

r = 0.10

δ =

δ =   ≈ 0.91

1

1 + r
1

1.10



Discounting the Future
Now consider an in�nitely repeated game

If a player receives payoff  in every future round, the present value of this in�nite
payoff stream is

This is due to compounding interest over time
This in�nite sum converges to:

Thus, the present discounted value of receiving  forever is 

p

p(δ1 + δ2 + δ3 + ⋯ + δT )

∞

∑
t=1

=
p

1 − δ

p ( )p

1−δ



With these payoffs, the present value of

both cooperating forever is 

Present value of both defecting forever

is 

Prisoners' Dilemma, In�nitely Repeated

( )50
1−δ

( )45
1−δ



Alternate interpretation: game continues
with some (commonly known among the
players) probability  each round

Assume this probability is independent
between rounds (i.e. one round
continuing has no in�uence on the
probability of the next round continuing,
etc)

Alternatively: Game Continues Probabilistically

θ



Then the probability the game is played 
rounds from now is 

A payoff of  in every future round has a present
value of

Note this is similar to discounting of future
payoffs (at a constant rate); equivalent if 

Alternatively: Game Continues Probabilistically

T

θT

p

p(θ1 + θ2 + θ3 + ⋯) = ( )
p

1 − θ

θ = δ



Recall, a strategy is a complete plan of action
that describes how you will react under all
possible circumstances (i.e. moves by other
players)

i.e. “if other player plays , I'll play , if they
play , I'll play , if, ..., etc”
think about it as a(n in�nitely-branching)
game tree, “what will I do at each node
where it is my turn?”

For an in�nitely-repeated game, an in�nite
number of possible strategies exist!

We will examine a speci�c set of contingent or
trigger strategies

Strategies in In�nitely Repeated Games

x a

y b



Consider one (the most important) trigger
strategy for an in�nitely-repeated prisoners'
dilemma, the “Grim Trigger” strategy:

On round 1: Cooperate
Every future round: so long as the history of
play has been (Coop, Coop) in every round,
play Cooperate. Otherwise, play Defect
forever.

“Grim” trigger strategy leaves no room for
forgiveness: one deviation triggers in�nite
punishment, like the sword of Damocles

Trigger Strategies



If you are playing the Grim Trigger
strategy, consider your opponent's
incentives:

If you both Cooperate forever, you
receive an in�nite payoff stream of 50
per round

Payoffs in Grim Trigger Strategy

50 + 50δ1 + 50δ2 + 50δ3 + ⋯ + 50δ∞ =
50

1 − δ



This strategy is a Nash equilibrium as
long there's no incentive to deviate:

If , then player will cooperate
and a one-time defection is not
pro�table

Payoffs in Grim Trigger Strategy

Payoff to cooperation > Payoff to one-time defection

> 57 +

δ > 0.583 

50

1 − δ

45δ

1 − δ

δ > 0.583



 is suf�cient to sustain
cooperation under the grim trigger
strategy

This is the most extreme strategy with
the strongest threat

Payoffs in Grim Trigger Strategy

δ > 0.583



Two interpretations of  as a
suf�cient condition for cooperation:

�.  as suf�ciently high discount rate
Players are patient enough and care
about the future (reputation, etc), will
not defect

�.  as suf�ciently high probability of
repeat interaction

Players expect to encounter each
other again and play future games
together

Payoffs in Grim Trigger Strategy

δ > 0.583

δ

δ



In general, can sustain cooperation
(under grim trigger strategy) when

Thus, cooperation breaks down (or is
strengthened) when:

�.  (the temptation payoff) increases
(decreases)

�.  (the cooperative payoff) decreases
(increases)

�.  (the defection payoff) increases
(decreases)

Cooperation with the Grim Trigger Strategy, In General

δ > b−a
c−a

a

b

c



“Grim Trigger” strategy is, well, grim: a single
defection causes in�nite punishment with no
hope of redemption

Very useful in game theory for
understanding the “worst case scenario” or
the bare minimum needed to sustain
cooperation!
Empirically, most people aren't playing this
strategy in life
Social cooperation hangs on by a thread:
what if the other player makes a mistake? Or
you mistakenly think they Defected?

There are “nicer” trigger strategies

Other Trigger Strategies



Consider the "Tit for Tat" strategy:
On round 1: Cooperate
Every future round: Play the strategy
that the other player played last
round

.hi-green[Example]: if they
Cooperated, play Cooperate; if
they Defected, play Defect

"Nicer" Strategies



Robert Axelrod

1943—

Research in explaining the evolution of cooperation
Use prisoners' dilemma to describe human societies and evolutionary
biology of animal behaviors
Hosted a series of famous tournaments for experts to submit a strategy
to play in an in�nitely  repeated prisoners' dilemma

“The contestants ranged from a 10-year-old computer hobbyist to professors of
computer science, economics, psychology, mathematics, sociology, political
science, and evolutionary biology.”

The Evolution of Cooperation (1984)
Among the most cited works in all of political science

 Each round had a 0.00346 probability of ending the game, ensuring on average 200 rounds of play

Axelrod, Robert, 1984, *The Evolution of Cooperation

The Evolution of Cooperation

1

1



Robert Axelrod

1943—

Axelrod's discussion of successful strategies based on four properties:

�. Niceness: cooperate, never be the �rst to defect
�. Be Provocable: don't be suckered by being too nice, return defection

with defection
�. Don't be envious: focus on maximizing your own score, rather than

ensuring your score is higher than your "partner's"
�. Don't be too clever: clarity is essential for others to cooperate with

you

The winning strategy was, famously, TIT FOR TAT, submitted by Anatol
Rapoport

Axelrod, Robert, 1984, *The Evolution of Cooperation

The Evolution of Cooperation



Folk theorem (simpli�ed): Many strategies can
sustain long-run cooperation if:

Each player can observe history
The value of future interactions must be
suf�ciently important to players

suf�ciently high discount rate 
suf�ciently high probability of game
continuing 

If this is true, many strategies can sustain long-
run cooperation

Any in the teal set in the diagram before
Grim trigger is simply the bare
minimum/worst case scenario (and,
importantly, easiest to model!)

Folk Theorem: Simply Put

δ

θ


