3.2 – Stackelberg Competition ECON 326 • Industrial Organization • Spring 2023 Ryan Safner

Associate Professor of Economics

✓ <u>safner@hood.edu</u>

ryansafner/ioS23

Solution in the interaction of t

Stackelberg Competition: Moblab

Stackelberg Competition: Moblab

- Each of you is one Airline competing against another in a duopoly
 - Each pays same per-flight cost
 - Market price determined by *total* number of flights in market
- **LeadAir** first chooses its number of flights, publicly announced
- FollowAir then chooses its number of flights

Stackelberg Competition

Henrich von Stackelberg

- **"Stackelberg competition**": Cournot-style competition, two (or more) firms compete on **quantity** to sell the **same good**
- Again, firms' joint output determines the market price faced by all firms
- But firms set their quantities **sequentially**
 - Leader produces first
 - Follower produces second

1905-1946

Return to Coke and Pepsi again, with a constant marginal cost of \$0.50 and the (inverse) market demand:

P = 5 - 0.05Q $Q = \mathbf{q_c} + \mathbf{q_p}$

$$egin{aligned} m{q}^*_c &= 45 - 0.5 m{q}_p \ m{q}^*_p &= 45 - 0.5 m{q}_c \end{aligned}$$

- Suppose now that Coke is the leader and produces q_c first
- Coke knows exactly how Pepsi will respond to its output:

$$oldsymbol{q}_p^* = 45 - 0.5 oldsymbol{q}_c$$

- Coke, as leader, in theory faces entire market demand
 - But **not rational** to act like a monopolist!
 - knows that Pepsi (the follower) will still produce afterwards, which pushes down market price for both firms!

Stackelberg Competition as Sequential Game

- This is a sequential game, so we should solve this via **backward induction**
- Though **Pepsi** will move second (last), it will be responding to **Coke**'s output
- So **Coke** must know how **Pepsi** will react in order to choose its optimal output

- Substitute follower's reaction function into (inverse) market demand function faced by leader

$$egin{aligned} P &= 5 - 0.05 m{q_c} - 0.05 m{p_p} \ P &= 5 - 0.05 m{q_c} - 0.05 (45 - 0.5 m{q_c}) \ P &= 2.75 - 0.025 m{q_c} \end{aligned}$$

• Now find MR(q) for Coke from this by doubling the slope:

$$MR_c=2.75-0.05q_c$$

• Now **Coke** can find its optimal quantity:

$$MR_c = MC \ 2.75 - 0.05q_c = 0.50 \ 45 = q_c^*$$

• **Pepsi** will optimally respond by producing:

$$egin{aligned} q_p^* &= 45 - 0.5 q_c \ q_p^* &= 45 - 0.5 (45) \ q_p^* &= 22.5 \end{aligned}$$

• Stackelberg Nash Equilibrium:

$$ig(q_c^* = 45, q_p^* = 22.5 ig)$$

• With $q_c^* = 45$ and $q_p^* = 22.5$, this sets a market-clearing price of:

$$P = 5 - 0.05(67.5)$$

 $P = \$1.625$

• Coke's profit would be:

• **Pepsi's** profit would be:

$$\pi_c = (1.625 - 0.50)45 \ \pi_c = \$50.625$$

$$egin{aligned} \pi_p &= (1.625 - 0.50) 22.5 \ \pi_p &= \$25.3125 \end{aligned}$$

Stackelberg-Nash Equilibrium, The Market

Cournot vs. Stackelberg Competition

Firm	Cournot (p = \$2.00)	Stackelberg (p = \$1.63)		
	output	profit	output	profit 🔹	
Coke	30.00	\$45.00	45.00	\$50.63	
Pepsi	30.0	\$45.00	22.50	\$25.31	
INDUSTRY	60.0	\$90.00	67.50	\$75.94	

Stackelberg and First-Mover Advantage

- Stackelberg **leader** clearly has a **first**mover advantage over the **follower**
 - Leader: q* = 45, π = \$50.63
 Follower: q* = 22.5, π = \$25.31
- If firms compete **simultaneously** (Cournot): $q^* = 30$, π = \$45.00 each
- Leading \succ simultaneous \succ Following

Stackelberg and First-Mover Advantage

- Stackelberg Nash equilibrium requires perfect information for both leader and follower
 - Follower must be able to **observe** leader's output to choose its own
 - Leader must **believe** follower will see leader's output and react optimally
- Imperfect information reduces the game to (simultaneous) Cournot competition

Stackelberg and First-Mover Advantage

- Again, leader *cannot* act like a monopolist
 - $\circ\,$ A strategic game! Market output (that pushes down market price) is $Q=q_c+q_p$
- Leader's choice of 45 is optimal **only if** follower responds with 22.5

Comparing All Oligopoly Models

1
J

Firm +	Bertrand (p = \$0.50)		Cournot (p = \$2.00)		Stackelberg (p = \$1.63)		Collusion (p = \$1.75)	
	output +	profit +	output +	profit +	output +	profit +	output 🗧	profit 🗧
Coke	45.00	\$0.00	30.00	\$45.00	45.00	\$50.63	22.50	\$50.63
Pepsi	45.00	\$0.00	30.00	\$45.00	22.50	\$25.31	22.50	\$50.63
INDUSTRY	90.00	\$0.00	60.00	\$90.00	67.50	\$75.94	45.00	\$101.25

- Output: $Q_m < Q_c < Q_s < Q_b$
- Market price: $P_b < P_s < P_c < P_m$
- Profit: $\pi_b=0<\pi_s<\pi_c<\pi_m$

Where subscript m is monopoly (collusion), c is Cournot, s is Stackelberg, b is Bertrand