3.2 - Stackelberg Competition

 ECON $326 \cdot$ Industrial Organization • Spring 2023 Ryan SafnerAssociate Professor of Economics
Asafner@hood.edu
© ryansafner/ioS23
© ioS23.classes.ryansafner.com

Stackelberg Competition: Moblab

LeadAir

Choose the number of flights LeadAir should schedule. FollowAir will make their schedule after learning yours, and your final profits will depend on both choices.

LeadAir Profit: \$2,077,000 FollowAir Profit: \$1,474,000

Stackelberg Competition: Moblab

- Each of you is one Airline competing against another in a duopoly
- Each pays same per-flight cost
- Market price determined by total number of flights in market
- LeadAir first chooses its number of flights, publicly announced

- FollowAir then chooses its number of flights

Stackelberg Competition

- "Stackelberg competition": Cournot-style competition, two (or more) firms compete on quantity to sell the same good
- Again, firms' joint output determines the market price faced by all firms
- But firms set their quantities sequentially
- Leader produces first
- Follower produces second

Henrich von Stackelberg

Stackelberg Competition: Example

- Return to Coke and Pepsi again, with a constant marginal cost of $\$ 0.50$ and the (inverse) market demand:

$$
\begin{aligned}
& P=5-0.05 Q \\
& Q=q_{c}+q_{p}
\end{aligned}
$$

Stackelberg Competition: Example

$$
\begin{aligned}
& q_{c}^{*}=45-0.5 q_{p} \\
& q_{p}^{*}=45-0.5 q_{c}
\end{aligned}
$$

- Suppose now that Coke is the leader and produces q_{c} first
- Coke knows exactly how Pepsi will respond to its output:

$$
q_{p}^{*}=45-0.5 q_{c}
$$

- Coke, as leader, in theory faces entire market demand
- But not rational to act like a monopolist!
- knows that Pepsi (the follower) will still produce afterwards, which pushes down market price for both firms!

Stackelberg Competition as Sequential Game

- This is a sequential game, so we should solve this via backward induction
- Though Pepsi will move second (last), it will be responding to Coke's output
- So Coke must know how Pepsi will react in order to choose its optimal output

Stackelberg Competition: Example

- Substitute follower's reaction function into (inverse) market demand function faced by leader

$$
\begin{aligned}
& P=5-0.05 q_{c}-0.05 p_{p} \\
& P=5-0.05 q_{c}-0.05\left(45-0.5 q_{c}\right) \\
& P=2.75-0.025 q_{c}
\end{aligned}
$$

- Now find $M R(q)$ for Coke from this by doubling the slope:

$$
M R_{c}=2.75-0.05 q_{c}
$$

Stackelberg Competition: Example

- Now Coke can find its optimal quantity:

$$
\begin{aligned}
M R_{c} & =M C \\
2.75-0.05 q_{c} & =0.50 \\
45 & =q_{c}^{*}
\end{aligned}
$$

- Pepsi will optimally respond by producing:

$$
\begin{aligned}
& q_{p}^{*}=45-0.5 q_{c} \\
& q_{p}^{*}=45-0.5(45) \\
& q_{p}^{*}=22.5
\end{aligned}
$$

Stackelberg Competition: Example

- Stackelberg Nash Equilibrium:

$$
\left(q_{c}^{*}=45, q_{p}^{*}=22.5\right)
$$

Stackelberg Competition: Example

- With $q_{c}^{*}=45$ and $q_{p}^{*}=22.5$, this sets a market-clearing price of:

$$
\begin{aligned}
& P=5-0.05(67.5) \\
& P=\$ 1.625
\end{aligned}
$$

- Coke's profit would be:

$$
\begin{aligned}
& \pi_{c}=(1.625-0.50) 45 \\
& \pi_{c}=\$ 50.625
\end{aligned}
$$

- Pepsi's profit would be:

$$
\begin{aligned}
& \pi_{p}=(1.625-0.50) 22.5 \\
& \pi_{p}=\$ 25.3125
\end{aligned}
$$

Stackelberg-Nash Equilibrium, The Market

Cournot vs. Stackelberg Competition

Firm	Cournot ($\mathrm{p}=\mathbf{\$ 2 . 0 0)}$		Stackelberg ($\mathrm{p}=\mathbf{\$ 1 . 6 3 \text {) }}$	
	output	profit	output	profit
Coke	30.00	\$45.00	45.00	\$50.63
Pepsi	30.0	\$45.00	22.50	\$25.31
INDUSTRY	60.0	\$90.00	67.50	\$75.94

Stackelberg and First-Mover Advantage

- Stackelberg leader clearly has a firstmover advantage over the follower
- Leader: $q^{*}=45, \pi=\$ 50.63$
- Follower: $q^{*}=22.5, \pi=\$ 25.31$
- If firms compete simultaneously (Cournot): $q^{*}=30, \pi=\$ 45.00$ each
- Leading \succ simultaneous \succ Following

Stackelberg and First-Mover Advantage

- Stackelberg Nash equilibrium requires perfect information for both leader and follower
- Follower must be able to observe leader's output to choose its own
- Leader must believe follower will see leader's output and react optimally
- Imperfect information reduces the game to (simultaneous) Cournot competition

Stackelberg and First-Mover Advantage

- Again, leader cannot act like a monopolist
- A strategic game! Market output (that pushes down market price) is

$$
Q=q_{c}+q_{p}
$$

- Leader's choice of 45 is optimal only if follower responds with 22.5

Comparing All Oligopoly Models

Firm	$\begin{gathered} \text { Bertrand (} \mathrm{p}= \\ \$ 0.50 \text {) } \end{gathered}$		$\begin{gathered} \text { Cournot (} \mathrm{p}= \\ \$ 2.00 \text {) } \end{gathered}$		Stackelberg ($\mathbf{p}=$ \$1.63)		$\begin{gathered} \text { Collusion (} p= \\ \$ 1.75 \text {) } \end{gathered}$	
	output	profit	output	profit	output	profit	output	profit
Coke	45.00	\$0.00	30.00	\$45.00	45.00	\$50.63	22.50	\$50.63
Pepsi	45.00	\$0.00	30.00	\$45.00	22.50	\$25.31	22.50	\$50.63
INDUSTRY	90.00	\$0.00	60.00	\$90.00	67.50	\$75.94	45.00	\$101.25

- Output: $Q_{m}<Q_{c}<Q_{s}<Q_{b}$
- Market price: $P_{b}<P_{s}<P_{c}<P_{m}$
- Profit: $\pi_{b}=0<\pi_{s}<\pi_{c}<\pi_{m}$

Where subscript m is monopoly (collusion), c is Cournot, s is Stackelberg, b is Bertrand

